Groundbreaking method detects defective computer chips
Guaranteeing that computer chips, that can consist of billions of interconnected transistors, are manufactured without defects is a challenge. But how to determine if a chip is compromised?
Now a technique co-developed by researchers at the Paul Scherer Institut in Switzerland and researchers at the USC Viterbi School of Engineering would allow companies and other organizations to non-destructively scan chips to ensure that they haven’t been altered and that they are manufactured to design specifications without error.
Hardware security is a critical issue. Anthony F. J. Levi, Department Chair of the Ming Hsieh Department of Electrical Engineering-Electrophysics, co- author of the study, “Three-dimensional imaging of integrated circuits with macro- to nanoscale zoom” published in Nature Electronics, says that “the supply chain for advanced electronics is susceptible.”
With this new method, it is possible to validate the integrity of computer chips using x-rays.
Called ptychographic X-ray laminography, the technique utilizes x-rays from a synchrotron to illuminate a small region of a rotating chip at an angle of 61 degrees (with respect to the normal of the chip plane). The resulting diffraction patterns are measured with a photon-counting detector array. The data are then used to generate high-resolution slice images of the chip, from which 3-D renderings are created.